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Abstract. Extending the notion of inheritable genotype in genetic programming
(GP) from the common model of DNA into chromatin (DNA and histones), we
propose an approach of embedding in GP an explicitly controlled gene expres-
sion via modification of histones. Proposed double-cell representation of indi-
viduals features somatic cell and germ cell, both represented by their respective
chromatin structures. Following biologically plausible concepts, we regard the
plasticity of phenotype of somatic cell, achieved via controlled gene expression
owing to modifications to histones (epigenetic learning, EL) as relevant for fit-
ness evaluation, while the genotype of the germ cell – to reproduction of indi-
vidual. Empirical results of evolution of social behavior of agents in predator-
prey pursuit problem indicate that EL contributes to more than 2-fold improve-
ment of computational effort of GP. We view the cause for that in the cumula-
tive effect of polyphenism and epigenetic stability. The former allows for phe-
notypic diversity of genotypically similar individuals, while the latter robustly
preserves the individuals from the destructive effects of crossover by silencing
of certain genotypic fragments and explicitly activating them only when they
are most likely to be expressed in corresponding beneficial phenotypic traits.
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1   Introduction

Until a few years ago, the role of histones (the family of proteins which DNA is
wrapped around forming a super-coiled chromatin fiber) in molecular biology com-
munity was viewed as solely to help pack the long DNA into the tiny nucleus of
eukaryotes’ cells. However, as the results of resent research suggest, the histones play
a significant role in regulating the synthesis, repair, recombination and transcription of
DNA [8][15][18]. It is recognized that the regulation of DNA-transcription (and con-
sequently, the overall gene expression) via histone code during cell division controls
the specialization of the cells with the same DNA into variety of cell types. In addi-
tion, the histone code might control the variances in phenotypes (i.e. biochemistry,
morphology, physiology and behavior) seen on different stages of life cycle of living
organisms as developing, maturing and aging. Moreover, the onset of some genetically
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associated diseases (and even cancer) is viewed as a process triggered by both a sud-
den activation of the genes that “contribute” to the disease and/or sudden deactivation
of the genes that “fight” the disease. Being an interface between the nurture and na-
ture, the changeable histone code might be regarded as an integrating link in the in-
formation pathway of epigenesis of living organisms. As illustrated in Figure 1 the
interaction between the phenotype and various environmental factors (such as food,
viral infections, exposure to toxins, irradiation, light, UV, etc.) leads to corresponding
variations in the histone code, which in turn result in modified (beneficial or detri-
mental) gene expression. Without touching the details of either the chromatin structure
or the chemical processes in histones, we would like to generalize the recently
emerged findings that transcription of the genes in DNA is controlled by the sur-
rounding chemical structure of histones. The acetylation of histones correlates with
transcriptional activity of the corresponding DNA gene, while the metylation - with
transcriptional inactivity of the gene.

In our approach, extending the notion of inheritable genotype in GP from com-
monly considered model of DNA of simulated organisms (i.e. genetic programs) into
chromatin (i.e. model of DNA with surrounding histone proteins) we attempt to mimic
the naturally observed phenomenon of regulating gene expression via epigenetic
modifications of histones (i.e. epimutations) into a software system. The system fea-
tures epigenesis embedded in evolution (phylogenesis), simulated through GP. Be-
cause (i) we are interested in short-term (i.e. within the life cycle of the organisms),
adaptive or developmental epimutations; and (ii) these epimutations are presumed to
be beneficial to the performance of behavioral (rather than biochemical, morphologi-
cal or physiological) aspect of the phenotype of simulated organisms, we consider our
approach as a form of epigenetic learning (EL), incorporated in GP. The objective of
our research is to explore the effects of EL on the performance, and namely – on the
computational effort of evolution (phylogenesis) of emergent social behavior of
autonomous software agents.

Fig. 1.  Simplified Information pathways in phylogenesis and epigenesis in eukaryotic organ-
isms. The inheritable genotype is illustrated as chromatin – a fiber of DNA wrapped around
(balls of) histone proteins. The latter control the transcription of DNA by activating or silenc-
ing the corresponding nearby genes in DNA. Being an interface between the nature and nur-
ture, histones are subject to modifications as a result of interaction between the phenotype and
the environment during the lifetime development and adaptation of organisms
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Our work can be viewed as related to the various aspects of approaches of em-
ploying heuristics [13], phenotype plasticity [4], Baldwin effect [5], and redundant
code [14][16] in GP. In contrast to all of these approaches, the mechanism of EL does
not imply direct manipulation on either the simulated DNA or the phenotype. Instead,
the proposed EL is achieved through controllable and inheritable gene expression
mechanism of simulated individuals. In our approach the genes, being silenced can
still comprise the genotype without affecting the performance of individual’s pheno-
type. In addition to being biologically more plausible, such an approach might offer (i)
better phenotypic diversity of genotypically similar individuals in the populations and
(ii) an efficient way to preserve the individuals from the destructive effects of cross-
over by explicit activation of the growing genetic combinations when they are most
likely to be expressed as corresponding beneficial phenotypic traits.

The remainder of this document is organized as follows. Section 2 briefly intro-
duces the task, which we use to test our hypothesis. The same section briefly explains
the key properties of the algorithmic paradigm employed to evolve the functionality of
agents. The proposed mechanism of EL is introduced in Section 3. The same section
presents empirically obtained results of the implications of EL on the performance of
evolution. The conclusion is drawn in Section 4.

2   Background

In this section, we briefly introduce the application and the main attributes of evolu-
tionary algorithmic paradigm employed in our approach. The general, well defined
and well studied yet difficult to solve predator-prey pursuit problem [2] is used to
verify the implications of EL on the efficiency of evolution. The problem comprises
four predator agents whose goals are to capture a prey by surrounding it on all sides in
a world.  In our work we consider an instance of the problem, which is more realistic
and probably more difficult for predators than is commonly considered in the previous
work [6][10]. The world is a simulated two-dimensional continuous torus and the
moving abilities of four predator agents are continuous. We introduce a proximity
perception model for predator agents in that they can see the prey and only the closest
predator agent, and only when they are within the limited range of visibility of their
simulated (covering an area of 360 degrees) sensors. The prey employs random wan-
dering if there is no predator in sight and a priori handcrafted optimal escaping stra-
tegy as soon as predator(s) become “visible”. The maximum speed of prey is higher
than the maximum speed of predator (i.e. predator-agents feature inferior moving
abilities). In order to allow predators to stalk and collectively approach the prey the
range of visibility of predators is more than the range of visibility of the prey. We
consider this case as a key prerequisite for creating inherently cooperative environ-
ment in that the mission of predators is nearly impossible unless they collaborate with
each other.

The evolved social (surrounding) behavior of predator agents emerges from what
we regard as Occam’s razor in interactions between the predator agents: simple, local,
implicit, proximity-defined, and therefore – robust and scalable interactions. Within
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the scope of this document, we consider the emergence as phenomena of local inter-
action creating global properties [1][12]. Without providing explicit domain-specific
knowledge about how to accomplish the task (e.g. how to surround the prey) the
agents, evolved through GP behave “as if” they had such explicit knowledge, because
the original source of problem-specific constrains is an integral part of the GP itself.
The interaction between GP and the problem environment allows the appropriate
knowledge about how to accomplish the task to emerge as a by-product. With the only
difference in the representation of relevant domain-specific knowledge, from the out-
side the evolved behavior is no different than one that allows the agents to accomplish
the task by intentional, deliberate acts (of surrounding). Thus we consider the evolved
behavior of agents as emergent behavior. Moreover, because in such seemingly inten-
tional, deliberate acts each agent is acting “as if” it is well aware of objectives of other
agents, shares these objectives, and anticipates the actions of other agents, the
emerged (surrounding) behavior of agents is considered as a form of social behavior.

A set of stimulus-response rules is used as a natural way to model the reactive be-
havior of predator agents [7], which in our approach is evolved using GP. GP is a
domain-independent problem solving approach in which a population of computer
programs (individuals) is evolved to solve problems [9]. The simulated evolution in
GP is based on the Darwinian principle of reproduction and survival of the fittest. The
strength of GP to automatically evolve a set of stimulus-response rules featuring arbi-
trary complexity without the need to a priori specify the extent of such complexity
might imply an enormous computational effort caused by the need to explore a huge
search space while looking for the potential solution to the problem. The function set
of GP comprises IF-THEN statement, arithmetical operations and comparison opera-
tors. The terminal set features local, proximity defined sensory- and continuous mov-
ing abilities. The representation of genetic programs is based on widely adopted
document object model (DOM) and extensible markup language (XML) in a way as
proposed in [17]: genetic programs are represented as a DOM-parsing trees featuring
corresponding flat XML text. Both the genetic operations and the evaluation of indi-
viduals are performed on their respective DOM-parsing trees using off-the shelf, plat-
form- and language neutral DOM-parsers, and XML-text representation is employed
as a flat format, feasible for migration of genetic programs among the computational
nodes in the distributed implementation of GP. The genetic operations are binary
tournament selection, random sub-tree and transposition mutations. The breeding
strategy is homogeneous: the performance of a single genetic program, cloned to all
the agents is evaluated. We consider such a strategy as adequate to the symmetrical
nature of the world, which is unlikely to promote any behavioral specialization among
predator agents. The fitness of the genetic program is evaluated as average of the
fitness measured over 10 different, randomly created initial situations. The fitness
measured during the trial starting with particular initial situation considers the per-
formance of the team of agents [3] and accounts for (i) the average energy loss of the
agents during the trial, (ii) the average distance of the agents to the prey by the end of
the trial, and (iii) the elapsed time of the trial. The energy loss estimation takes into
account both the basal metabolic rate of the agents and the energy loss for moving
activities. Smaller values of fitness function correspond to better performing predator
agents.
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A trace of the entities in the world, where the team of predator agents is governed
by sample best-of-run genetic program in one of the initial situations is shown in Fig-
ure 2. The prey, originally situated in the center of the world, is captured by time step
118. The emergence of following behavioral traits of predator agents are noticeable:
(i) switch from greedy chase into surrounding approach (agent #2, time step 65, on the
top, center of the world); (ii) zigzag move, which results in a lower chasing speed
indicating “intention” to trap the prey (agent #1, after time step 40, center) and (iii)
surrounding approach (agents #0 and #3, top; agent #2, bottom and top) demonstrated
during the final stages of the trial.

Fig. 2.  Traces of the entities with predator agents governed by the sample best-of-run genetic
program. The prey is captured in 118 simulated time steps (top). Large white and small black
circles denote the predator agents in their initial and final position respectively. The small white
circle indicates the prey, initially situated in the center of the world. The numbers in rectangles
show the timestamp information

3   Embedding EL via Epimutations in GP

3.1   The Mechanism of EL

Chromatin Representation. In the proposed approach, we represent the predator
agents as simulated individuals passing through the phases of birth, development and
survival (reproduction) or death (Figure 3). At the phase of birth, the individual is
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represented as a single embryonic cell expressed by its respective chromatin. The
simulated division of the embryonic cell into single germ cell and single somatic cell
initiates the EL phase. Both cells are expressed by their respective chromatin struc-
tures. In contrast to the germ cell, the somatic cell is subject to EL via iterative
epimutations. The completion of the learning phase of the organism is associated with
fitness evaluation, based on the performance of the phenotype of modified somatic
cell. Reproduction phase concludes the life cycle of the individual when, depending
on the relative ranking of the individual in the population and the outcome of the fol-
lowing selection, either (i) a new individual (i.e. embryonic cell) is born by crossover
with another individual from the surviving mating pool or (ii) the individual dies. The
logical separation of the cells into germ cell and somatic cell where the former is sub-
ject to phylogenesis and the latter – to epigenesis and following fitness evaluation
reflects our intention to simulate the biologically plausible presumption that the
epimutations in somatic cells do not cross the so called Weissman barrier and conse-
quently, are not inherited through the germline.

The representation of chromatin as a genotype of both germ and somatic cell of the
organism in GP is based on the representation of DNA paired with isomorphic histone
code. Employing the flexibility of XML, we implemented the chromatin in which
DNA is organized into tree structure representing the evolved stimulus-response rules,
combined with histones expressed as corresponding attributes of IF-THEN nodes of
the rules (Figure 4a). The semantics of genotype is shown in Figure 4b. The gene
expression mechanism, controlled by histone code implies that during the evaluation
of the agent behavior only IF-THEN nodes with histone attributes equal to “1” feature
transcriptional activity and therefore – only these nodes are parsed, considered as
active phenotype and executed (Figure 4c).

Fig. 3.  Life cycle of simulated individual. Individual features double cell representation – germ
cell and somatic cell where the former is subject to phylogenesis and the latter – to EL and
following fitness evaluation. Only the best scoring (on EL objective) epigenetic changes to
phenotype of somatic cell are evaluated for fitness
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Algorithm of EL. We incorporated the EL into the fitness evaluation routine of GP as
a special case of random local search embedded within GP (Figure 5). We consider
the following relevant aspects of the algorithm of EL: (i) the way of selecting which
histone should be modified, (ii) the algorithm of epimutations (histone modification),
(iii) the objective of learning (i.e. the learning task), (iv) the learning interval and (v)
the amount of EL-iterations.

Random histone is selected for modification and the modification algorithm is
simply inverting the value of the selected histone. Both the selection and modification
algorithms are implemented in the Modify_Histones function as illustrated in Fig-
ure 5, line 10.

Fig. 4.  Genetic representation. The genotype of somatic cell before the development phase of
the individual is shown in (a). (b) and (c) illustrate the human readable semantics of the phe-
notype of somatic cell before the EL phase (b) and after EL (c) as a result of silencing an “if-
then” statement due to change of the value of corresponding histone from “1” to “0”.

 1. Procedure EvalWithEL(GP: TChromatin; EL_Cycles: integer; [out] Fitness: TFitness);
 2. var Dev_GP : TChromatin;
 3.     i, EL_Ability, Dev_EL_Ability : integer;
 4. begin
 5.  Dev_GP:=GP; EL_Ability:=0;
 6.  for i:=1 to EA_Cycles do begin
 7.   Clone_GP_To_All_Agents(GP);
 8.   Eval_EL_Objective([out] Dev_EL_Ability);
 9.   if (Dev_EL_Ability better_than EL_Ability) then Dev_GP:=GP;
10.   if (i < EL_Cycles) then Modify_Histones(GP);
11.  end;
12.  Clone_GP_To_All_Agents(Dev_GP);
13.  Eval_Fitness ([out] Fitness);
14. end;

Fig. 5.  The algorithm of EL embedded in the routine of evaluation of genetic program. The
output specifiers of function parameters are explicitly given for better readability

a)

try
 if (Peer_a within ±89) then begin
  if (Speed ≥ 16) then Stop;
  if not (PreyVisible) then Go_0.25;
 end;
except Go_0.75;

try
 if (Peer_a within ±89) then begin
// histone=0, gene is silenced:

// if (Speed  16) then Stop;  
// histone=1, gene is active:
  if (not PreyVisible) then Go_0.25;
 end;
except Go_0.75;

b)

c)

<IF-THEN-NA                                              histone="1">
 <COND-THEN-NA>
 <COND_TVisAngle>
  <VAR_TVisAngle>Peer_a</VAR_TVisAngle>
  <OPER_TVisAngle>WI</OPER_TVisAngle>
  <CONST_TVisAngle>89</CONST_TVisAngle>
  </COND_TVisAngle>
 </COND-THEN-NA>
 <THEN> <IF-THEN                                    histone="1">
   <COND-THEN>
   <COND_TSpeed>
    <VAR_TSpeed>Speed</VAR_TSpeed>
    <OPER_TSpeed>GE</OPER_TSpeed>
    <CONST_TSpeed>16</CONST_TSpeed>
   </COND_TSpeed>
   </COND-THEN>
  <THEN> <COM>Stop</COM>  </THEN>
  </IF-THEN>
  <IF-THEN                                                    histone="1">
   <COND-THEN>
   <COND_TBool>
    <OPER_TBool>not</OPER_TBool>
    <VAR_TBool>PreyVisible</VAR_TBool>
   </COND_TBool>
   </COND-THEN>
  <THEN> <COM>Go_0.25</COM></THEN>
  </IF-THEN> </THEN>
 <NA> <COM>Go_0.75</COM> </NA>
</IF-THEN-NA>

     DNA
       Histone code
       Fragment of genotype and corresponding
       phenotypic representation
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We considered three cases of EL featuring different learning objectives and epige-
netic inheritance as follows:
• The learning objective is the same as the evolution attempts to achieve (EL case 1,

EL1). The estimation of the learning ability (variable Dev_EL_Ability, Figure 5,
assigned in line 8) is identical to fitness evaluation. The epimutations in case EL1,
although inherited through the EL cycles of somatic cell of simulated individual,
are not assumed to be inherited thought the germline,

• The learning objective aims to increase the amount of implicit interactions be-
tween predator agents (EL case 2, EL2). Learning ability accounts for the total
number of references to any sensory variables related to perceiving the peer
predator agents. The epimutations in case EL2 are not assumed to be inherited
throught the germline of simulated individuals, and

• EL3: the learning objective is the same as in EL2 and the epimutations are as-
sumed to be inherited thought the germline of simulated individuals.

In all three cases only the best-scoring (on EL objective) adapted individual is be-
ing evaluated for fitness. The considered cases of epigenetic inheritance through the
development of the somatic cells (EL1 and EL2) is based on our intention to simulate
the recognition that in Nature the epimutations are not inherited through the germline
of individuals. The introduction of inheritance of epimutations through the germline of
simulated individuals (EL3) is motivated by our interest in analyzing the implications
of such inheritance on the efficiency of simulated evolution. Germline inheritance of
epimutations implies that the histone code of germ cell is assumed to be identical to
the mutated (through EL) histone code of somatic cell of the organism.

The case of learning objective, not identical to the fitness is introduced with objec-
tive to reduce the computational cost of learning (and consequently, to boost the over-
all performance of GP with embedded EL) by decreasing the learning interval. Be-
cause the qualitative value of the fitness heavily depends on the result of quantitative,
discrete event of capturing the prey, the approach of noisy fitness evaluation [11] is
hardly applicable for the EL1: the fitness values are simply undefined prior to captur-
ing the prey or, ultimately, before the expiration of the allowed time interval of the
trial. Exploring the feasibility of using simple, continuous function, evaluated over
reduced learning interval for estimation of learning abilities of agents, we use the
amount of implicit interactions among the agents. The benefits of the proposed ap-
proach are as follows: (i) it is biologically plausible – compared to the survival proc-
ess, the learning acts in nature take place in a different time scale; and the learning
objective usually features downgraded complexity, risk, and cost; (ii) being continu-
ous, “anytime” indicator of the fitness, the EL objective function could be noisily
evaluated over reduced learning interval; and (iii) due to the experimentally verified
correlation of learning abilities with the fitness, the learning and evolution would
synergistically influence each other.

The learning interval is 0.25 of the trial of fitness evaluation. The decision about
the duration of learning interval is based on the anticipation that the degradation of
computational effort due to noisy fitness evaluation would be insignificant (indeed, the
experimentally obtained standard deviation of the noise in estimating the overall
amount of interactions from the amount of interaction obtained during the considered
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learning interval is 0.35) and this degradation is most likely to be overcompensated by
the associated 4-fold improvement of computational performance.

 The minimally possible amount of learning iterations is attempted: a single learn-
ing iteration in EL1, and 2 learning iterations in EL2 and EL3 (variable EL_Cycles in
Figure 5 equals 1 and 2 respectively).

3.2   Effect of EL on the Performance of Evolution: Empirical Results

Values of Parameters. The values of parameters of GP used in our experiments are
as follows: the population size is 400 genetic programs, the selection ratio is 0.1,
including 0.01 elitism, and the mutation ratio is 0.02, equally divided between sub-tree
mutation, transposition and histone modification. The latter is performed in identical
way as in the EL. The termination criterion is defined as a disjunction of the following
conditions: (i) fitness of the best genetic program in less than 300 and the amount of
initial situations in which the prey is captured (successful situations) equals 10 (out of
10), (ii) amount of elapsed generations is more than a 100, and (iii) amount of recent
generations without fitness improvement is more than 16. The raw fitness value of 300
roughly corresponds to successful team of predator agents, which in average (over all
initial situations) capture the prey by the middle of the trial. The latter equals to 600
time steps, where each step is simulated by 500ms of “real time” sampling interval.  A
superior sensory abilities of predators (range of visibility 400mm vs. 200mm for prey)
and inferior moving abilities have been considered (20mm/s vs. 24mm/s).

Computational Effort of GP Incorporating EL. The effect of EL on the
computational effort, statistically estimated (in a way as suggested in [9]) from the
probability of success p(t) of GP over 20 independent runs is shown in Figure 6. As
figure illustrates, probability of success of 0.95 for GP (denoted as P, phylogenesis) is
achieved for about 32,000 individuals, while for incorporated EL1 (denoted as
P+EL1), EL2 (P+EL2) and EL3 (P+EL3) these values are 24,000 (reduced 1.3 times),
15,000 (2.1 times) and 14400 (2.2 times) individuals respectively. The reasons for
improved computational effort of evolution with embedded EL we view in the
cumulative effect of polyphenism and epigenetic stability introduced by histone code
and exploited by proposed EL. The polyphenism allows for phenotypic diversity of
genotypically similar individuals, while the epigenetic stability robustly preserves the
individuals from the destructive effects of crossover by silencing of certain genotypic
combinations and explicitly activating them only when they are most likely to be
expressed in corresponding beneficial phenotypic traits.

The breakdown of computational effort is shown in Table 1. The total equivalent
amount of evaluated individuals ETE, depicted as an abscissa in Figure 9, which takes
into account the reduced learning interval with respect to the trial interval of fitness
evaluation, is calculated in accordance with the following rule:

ETE = EP + (TEA / TFE) x  EEL
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Where EP and EEL are the amount of fitness evaluations during the phylogenesis and
EL (either EL1 or EL2) respectively, and TFE and TEL are the trial interval of fitness
evaluation and learning interval respectively. The results, shown in Table 1 indicate
that both P+EL2 and P+EL3 compared to P+EL1 not only reduce ETE (which, in gen-
eral might be due to the reduced learning interval alone). Moreover, EL2 and EL3
reduce EP too, suggesting the presence of favorable effect of these cases of EL on the
efficiency of phylogenesis. This effect overcompensates the expected deteriorative
effect of the noisy evaluation of learning objective in EL2 and EL3 on the efficiency
of evolution. The effect could be explained by beneficial dependencies between the
amount of interactions and fitness. We assume that these dependencies are beyond the
correlation (which alone should not result in decrease of EP) as elaborated earlier in
3.1.2. Presumed statistical association of the climb in the learning landscape during
EA with a move towards the proximity of optimal solutions in the fitness landscape
could be viewed as a reason for the beneficial effect of considered cases of EL on the
efficiency of evolution.

Fig. 6.  Probability of success p(t) for GP employing phylogenesis only (P), EL embedded in
phylogenesis with learning objective the same as in the evolution (P+EL1), and  learning ob-
jective of intensifying interactions (P+EL2 and P+EL3). The inheritance of epimutations in
EL2 is through the EL cycles of somatic cell, while in EL3 the inheritance is both through the
EL cycles of somatic cell and through the germline of simulated individual

Table 1. Breakdown of computational effort of GP

Computational effort
Case EL objective Epigenetic

inheritance
EL interval,

TEL

EL
cycles EP EEL ETE

Speedup

P - - - - 32000 - 32000 1

P+EL1 Same as
fitness In somatic cells only TFE 1 12000 12000 24000 1.3

P+EL2 Interactions In somatic cells only 0.25*TFE 2 10000 20000 15000 2.1

P+EL3 Interactions Both in somatic cells and
through the germline

0.25*TFE 2 9600 19200 14400 2.2
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4   Conclusion

We present the results of our work inspired by recently discovered findings in mo-
lecular biology suggesting that histones play a significant role in regulating the gene
expression in eukaryotes. Extending the notion of inheritable genotype in GP from
commonly considered model of DNA into chromatin, we propose an approach of
epigenetic programming as way to incorporate the naturally observed phenomenon of
regulated gene expression via modification of histones. Considering the individual as
comprising of germ cell and somatic cell, both represented as a chromatin, we focus
our attention on the development phase of the life cycle of simulated individuals. We
mimic the biologically plausible hypothesis that the information contained in chroma-
tin is inheritable both through the development of the somatic cells and through the
germline, but that the epigenetic changes to somatic cells’ histones are not believed to
be inheritable through the germline. Thus, we regard the phenotype of the somatic cell
(subject to beneficial EL via histone code modification) as relevant for fitness evalua-
tion of the individual, while the genotype of the germ cell – as a genetic material in-
volved in phylogenesis. The empirically obtained performance evaluation results indi-
cate that epigenesis with biologically plausible epigenetic inheritance through the
development the somatic cells contributes to 2.1-fold improvement of computational
effort of genetic programming applied to evolve social behavior of predator agents in
predator-prey pursuit problem. The simulated epigenetic inheritance through the
germline of individuals yields a marginally better (2.2-fold) reduction of computa-
tional effort. We associate the benefits of embedding EL in evolution with the cumu-
lative effect of polyphenism and epigenetic stability. The former allows for phenotypic
diversity of genotypically similar individuals, while the latter robustly preserves the
individuals from the destructive effects of crossover by silencing of certain genotypic
combinations and explicitly activating them only when they are most likely to be ex-
pressed in corresponding beneficial phenotypic traits. In this context, our approach
can be viewed as an attempt to co-evolve the most beneficial genotypic building
blocks and the best possible combinations of their expressions.

In the near future we are planning to incorporate evolvable rather than handcrafted
learning objective as used in our current approach in order to investigate whether it
has even better effect on the performance of the phylogenesis. We are also interested
in enhancing the currently used homogeneous breeding strategy into a strategy which
allows for genotypically homogeneous team of agents to develop into phenotipically
diverse one by means of EL (as in polyphenism, seen in social insects in the nature).
In addition, we intend to investigate the feasibility of the proposed approach for mod-
eling the morphogenesis of the somatic cells through EL in evolvable multi-cellular
organisms. Finally, considering our approach as a domain-neutral we are planning to
verify it on different tasks from various problem domains and to compare the obtained
results with results of known approaches of incorporating other models of redundant
genetic representations.
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